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F R E E  O S C I L L A T I O N S  OF L A Y E R E D  

E L A S T I C  C O M P O S I T E  SHELLS OF R E V O L U T I O N  

A. N. Andreyev UDC 539.3 

An effective algorithm for the numerical solution of linear boundary-value problems of the stability of 
multilayered composite shells of revolution combining the Bubnov-Galerkin method for systems of Fredholm 
integral equations of the second kind with the generalized form of the invariant imbedding method has been 
developed in [1]. 

In this paper, the algorithm is extended to the class of problems on the free oscillations of shells of 
revolution and is used in the numerical determination of the natural frequencies and oscillation forms of 
a layered composite circular conic and truncated shell which is firmly fixed. A comparative analysis of the 
calculation results obtained on the basis of classical and nonclassical [2] differential equations for the dynamics 
of layered shells is carried out. This enabled identification and estimation of the influence of transverse shear 
deformations on the natural frequencies and forms of oscillations. The results obtained allow a conclusion oil 
the effectiveness of the algorithm in problems of shell dynamics. 

1. Numer i ca l  D e t e r m i n a t i o n  of na tu ra l  Frequencies  and Oscil lat ion Forms  of Layered  
Shells of Revolu t ion .  Let us consider a problem on free steady-state harmonic oscillations of a thin-walled 
elastic layered composite shell of revolution, where the reinforcement structure of the layers is independent 
of the angular coordinate. The differential equations and boundary conditions for this problem are obtained 
(see [3-7]) from the corresponding linearized equations 

(D + AO2/Ot 2) U = F 

and from the boundary conditions 

l rU = P 

for the dynamics of layered shells. Taking the components of the external surface and contour loads equal to 
zero and after the transformation (w is the frequency parameter) 

02 - w  2 (1.1) 
0t 2 

we get a boundary-value problem on the eigenvalues 

DU = w 2 A U ,  Ir U = 0. (1.2 

The determination' of the spectrum of free oscillations of the thin-walled layered system is reduced to th~ 
integration of this problem. Here U is the vector of characteristics of the strain-stressed state of the shell; D 
A, Ir are linear differential operators with two independent variables: the angular variable ~o ( - r  <~ ~ ~< ~r 
and the ,neridional variable z (0 <~ x ~< 1). The explicit form of these operators is given below for a particula 
case. Separation of the angular coordinate ~0 in (1.2). which is carried out (see [3-7]) by expansion of th 
solution into a Fourier series by using the system of trigonometric functions 1, cos n% sin n~ (1 ~ n < oc 
leads to a linear boundary-value problem on eigenvalues for the system of ordinary differential equations 

y'(x) = A n ( x ) y ( x ) + w 2 B , ~ ( x ) y ( x ) ,  My(0) = 0, Ny(1) = 0. (1.3 
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Here y(x) is the 28-dimensional vector of the kinematic and force characteristics of the strain-stressed state 
of the shell; A,~(x), B,,(x) are the 2s x 2s matrices continuous in the segment [0,1], containing the integer 
parameter n of the peripheral wave formation; and M, N are s • 2s matrices. 

The boundary-value problem 

z ' (x )=A,~(x )z (x )+ f ( z ) ,  M z ( 0 ) = 0 ,  N z ( 1 ) = 0  (1.4) 

is considered together with (1.3) for the 2s-dimensional vector z(x). Let Gn(z,p) be the Green matrix [8] of 
this boundary-value problem. It is known [8] that the solution to problem (1.4) for each vector f(x) continuous 
in the segment [0,1] can be written in the form 

1 

z(x) = f G,~(x,p) f(p) dp, (1.5) 
0 

and the problem on the eigenvalues of (1.3) is equivalent to the problem of determination of characteristic 
numbers and eigenvectors of the linear homogeneous system of Fredholm integral equations of the second kind 

1 

y(x) - w2 / G,~(x,p) B,~(p) y(p) dp = O. (1.6) 
0 

The solution to problem (1.6) will be constructed in the space L2(0, 1) of quadratically summable 
2s-dimensional vectors by the Bubnov-Galerkin method [9]. In accordance with this method, the complete 
linearly independent system of elements {r will be chosen in the space L2(0, 1). The vectors r 
are taken to be continuous and orthonormalized. The approximate solution yL(x) of the system of integral 
equations (1.6) is constructed in the form 

L 
yL(x) = Ck(x). (1.7) 

k = l  

Substituting solution (1.7) into system (1.6) and requiring that the residual be orthogonal to the coordinate 
vectors ~bl(x),~b2(x)~ . . . .  ~bl.(x). we obtain an algebraic system of linear homogeneous equations for 
determining the coefficients cl, c2, . . . ,  CL: 

L 1 1 

k = l  o 0 

Only nontrivial solutions to system (1.8) are of physical interest. The determination of such solutions - -  
eigenvectors and the corresponding eigenvalues of the matrix of coefficients for this system - -  involves, in the 
general case, the use of numerical methods. At present, the methods of numerical solution to the algebraic 
eigenvalue problem have been developed rather well (see, for example, [10]). If this problem is solved and 

. . . ,  ~/: are the eigenvalues of the matrix of coefficients from system (1.8), then the equalities 

serve to determine the approximate values of the lower natural frequencies of the shell corresponding to the 
given value of the parameter n. Sufficient accuracy in representing these values in the form (1.9) is ensured 
by the convergence of the Bubnov-Galerkin process for the Fredholm integral equations of the second kind 
(see [9]) and by the appropriate choice of the value for the parameter L. 

The volume of computations can be substantially reduced if we take into account the fact that many 
columns of the matrix B,~ (x) in problems of shell dynamics are zero. Let K be a set of numbers of zero columns 
and J, a set of numbers of nonzero columns of this matrix, such that K t3 J = {1, 2 , . . . ,  2s}, K gl J = O. It is 

X c~ clear from (1.8) that, in constructing the basic system {r )}k=l, it will suffice to require its completeness 
in the class L j  C L2(0, 1) of 2s-dimensional vector-functions whose K-coordinates are equal to zero. This 
basic system is sufficient for the approximation of J-coordinates of eigenvectors from (1.6) and for the correct 
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determination of natural frequencies. If it is also necessary to calculate the K-coordinates of the eigenvectors, 
then the system {~bk(x)}k~__a should be extended to a system which is complete in the entire space L2(0, 1) 

and Eqs. (1.7) and ( 1 . 8 ) a t  = = = ") should be used. 
For the computat ion of the matrix of coefficients for the linear algebraic system (1.8), we note that 

the internal integrals in (1.8) [2s-dimensional vectors Zl(X), z2(x), . . . ,  zL(x)] are, due to (1.4) and (1.5), the 
solutions to the following boundary-value problems (k = 1, 2 , . . . ,  L): 

z~(x) = a , ( x ) z k ( x ) +  Bn(x ) r  Mzk(0)  = 0, Nzk(1) = 0. (1.10) 

Let us combine the 2s-dimensional vector-columns zl(x),  z2 (x) , . . . ,  z/;(x) and B,,(z)~/,l(x), B~(x)q ,2(x) , . . . ,  
Bn(x) ~bL(Z ) into the 2s • L matrices Z(x) and Fn(x): 

Z(x)  = I l Z l ( X ) ,  z 2 ( x ) , . . . ,  ZL ( x ) l l  , Fn(x) -~ Sn(x ) l l r  1 (x), ~ b 2 ( x ) , . . .  , CL(X)II. 

Now the family of boundary-value problems (1.10) can be formulated as the following boundary-value problem 

Z'(x) = an(z)Z(x)  + F , (x ) ,  MZ(O) = Osxz,  NZ(1) = OsxL (1.11) 

for the determination of the 2s x L matrix Z(x). If this problem is solved and the matrix Z(x) is found, 
then the external integrals in system (1.8) are computed by using some quadrature formula of numerical 
integration. This completes the determination of the matrix of coefficients for this system. 

Let us point out two essential peculiarities which should be taken into account in choosing the numerical 
integration method for the boundary-value problem (1.11): the matrix structure of its solution and the strong 
instability inherent in the nonclassical differential equations of the theory of layered shells (see [11]). The 
invariant imbedding method in its generalized form is an effective method of numerical integration for 
such problems (see [1, 12]). The computational experience accumulated (see [11-14]) makes it possible to 
recommend this modification of the imbedding method for wide use in problems of strength, stability, and 
dynamics of shells. 

2. D i f f e ren t i a l  E q u a t i o n s  for  Free  Osc i l l a t ions  of  a M u l t i l a y e r e d  O r t h o t r o p i c  Con ic  Shell .  
Let us consider an orthotropic circular conic truncated shell of thickness h consisting of m composite layers 
with a fibrous structure. Let 2a be the cone angle, s = x 1 the distance along the generatrix of the cone from 
its top (0 < a ~ s ~< b), and ~2 = x2 the angular coordinate (0 ~< ~2 <~ 2~r). The Lam~ parameters A1, A2 and 
the curvature radii R1, R2 of the coordinate lines for the introduced orthogonal system of coordinates are as 
follows: 

AI = I, A2 = s sina, R1 =cr  R2 = s t a n a .  (2.1) 

We restrict our consideration to the case where the directions of the orthotropy axes coincide with the 
directions of coordinate axes, and the structural reinforcement parameters of all the layers of the shell are 
independent of the angular coordinate ~ but can depend on the meridional coordinate s, which is the case, 
for example, in the reinforcement of a conic shell along the generatrix by fibers with a constant cross section. 
Assuming that  the shell is sufficiently thin, we ignore values of the order h/R2 compared to unity in all 
equations. 

The nonclassical equations of [2], which make it possible to take into account transverse shear 
deformations, will be used as a basis in the analysis of the free oscillations of the shell. Going from the 
tensor components to their physical constituents and from the covariance derivatives to partial derivatives 
in the tensor equations [2], performing transformation (1.1), and taking into account inequalities (2.1), we 
obtain a closed system of linearized differential equations for the problem on the free oscillations of a conic 
shell. This system includes the following groups of dependences: 

The relations of elasticity (the brackets at the indices of the physical constituents are omitted, k = 
1 , 2 , . . . ,  m is the ordinal number  of the layer) 

a(k) = a(k).(k) a(k)e(k) ~ )  (k) (k) 11 11 ~11 + 12 22 ' -~ a33") '12  , (2.2) 
~ )  = _(k)_(k) a(k),.(k) ~.(k) = c(k)~(k) r(k) = c/kl. Ik) t t l 2  Z l l  3t" 22 ~'22 , 13 11 113  , 23 22 ;23 " 
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The law of distribution of the physical constituents of the displacement vector over the thickness of 
the package of layers 

0~ , v~k) z 0~ .(k)~., @) 
t'~ k ) =  1A 1 -- Z ~ -'t- /-t~ ) 71"1 = u2 A2 0c2 + 1*22 2 = w ,  

V(k)is z) f (z)  - f (hk-1)  
i l L ,  = 

The deformation-displacement relations 

+ ~ f(hj) - f(hj-1) 
j=l  ~l('i 3'~ (i = 1,2) .  

~(~) 1 r.a~ 

r <  o2w o=a ( z ow 

- 11 

g~kl) OUl 02W 071.1 ~ (k) 
_ _  O~11 7r 1 

0, ~ 7 + " i { ) W + - a 7  ' 

- ( )1 z 02w ,(k)&r2 Ow+#~)rq + - - ,  
A2 0902 -t- P22 ~ + sin a ul - z ~ R2 

, , / ( k )  f'(Z) 
23 - 4~ ) , ~ , . .  

(2.3) 

(2.4) 

The dependences between the generalized internal forces and moments in the shell surface and the 
internal stresses in its layers 

m hk 

P/~ 
= h ( 2 . 5 )  

The representations of the integral characteristics of d'Alembertian mass forces 

m hk 

IIXz, Yz, Zz, III = F_, f pkll "z(k), z,z(k), -ZZ'(k)'4k),wlldz (2.6) 
k=l hk_l  

(Pk is the material density of the kth layer of the shell). 
The differential equations of steady-state free oscillations written in stresses and moments 

0721 
aos (A2711) - sin c~. Tn + ~ + w2A2Xl = O, 

0T22 0 
0- -7  + sin a -  T21 + (A2T12) + w2A2X2 = O, 

02 0M22 02M12 1 02M22 A2 
Os 2 ( A2Mn ) - s i n a .  ~ + 2 + T22 O,s OsOqo A2 0~o 2 R2 (2.7) 

+ 2  s ina  0M21 + w  2 A2I+ (A2Y1) + = 0  
A--7 0V • 0V ] ' 

0S21 A2Q1 +w2A2Z1 = 0, 0~(A2Sl1) - +  0--7 -- sin ct. ,5'22 

0S22 + sin a -  Sal + 0 0-'-7- ~ss (A2&2) - AaQ2 + w2A2Z2 = O. 
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The function J (z) determining the aisrrmution law oi ~ n ~ e l a c  ~,~,,~ ~c~o~ . . . . . . .  s . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
is taken in the form 

f ( z )  = z 3 - 1.5 h z 2 , (2.8) 

corresponding to the quadratic dependence of these values on- the normal coordinate z (see [2]). 
Equations (2.1)-(2.8) are a complete system of nonclassical differential equations for the problem of the 

natural oscillations of the conic shell. The order of this system is equal to 12, which requires the setting of six 
boundary conditions at the domain boundary in a properly posed boundary-value problem. The complete set 
of variants of such conditions corresponding to different methods of fixing and loading the edges is given in [2]. 
In the case considered below of a shell closed in the circular direction with rigidly fixed edges s = a, s = b, 
these conditions require vanishing of the generalized displacements at points of the boundary contour (see [2]): 

Ow 
at s = a, b w = ~ ----- U l  = U2 = 71"1 = 71"2 = 0 ,  (2.9) 

0.s 
and also the 27r-periodicity of the solution with respect to the angular coordinate ~o. 

Equations (2.1)-(2.8) allow for the orthotropy of the deformability properties, the ultimate shear 
rigidity of all or part of the layers of the shell, and the variability of the elasticity coefficients and, therefore, 
can be used for the analysis of the natural oscillations of a wide class of thin-walled layered composite conic 
shells. The nondependence of the order and structure of these equations on the number of the shell layers 
and on the layer package structure as a whole should also be considered as an advantage. This simplifies 
the statement and investigation of the problem on the free oscillations of the multilayered shell as a linear 
boundary-value problem on eigenvalues for a system of partial differential equations. 

Also, note the passage to the limit (see [2]) 

(2.10) 
(k = 1 ,2 , . . . ,  m, i = 1,2) from Eqs. (2.1)-(2.8) to the classical equations of the steady-state free oscillations 
of the conic shell. This passage to the limit is used below to estimate the influence of transverse shear 
deformations on the natural frequencies. 

The dimensionless independent variable x and the vector y = [yl,y2,... ,y12] t of the dimensionless 
kinematic and force characteristics of the strain-stressed state of the shell are introduced by means of the 
equalities 

x = s / b ,  w = h y l ,  y2=y~ ,  ul =by3, u2=by4,  7rl = E~bys/h 3, 7r2= E~by6/h 3, 

0M12 ., . COCOs ( A 2 M l l )  - sin a .  M 2 2  + 2 ~ + w ' , 4 , ] " l ,  = h2E~ yT, (2.11) 

A2Mn = h2bE~ys, A2T11 = hbE~y9, A2T21 = hbE~ylo, A2211 = h4by11, A2S12 = h4by12, 

where E{ is the Young's modulus of the first binding (internal) layer of the shell. The equations of steady-state 
free oscillations (2.1)-(2.8) in the variables (2.11) and the boundary conditions of rigid fixing (2.9) can b( 
written in the matrix form 

,4 (x, D~) ~x  = B (x, Dr)  y + w2 C (,r, D~) y ; (2.12 

HS6,06l ly(a/b ,v)  = O, ]]E6,06llv (1,V) = 0. (2.13 

In (2.12), A, /3, C are matrices 12 x 12 whose elements are polynomials of the differential operator D~ (D,  : 
CO/CO~;) with coefficients depending on the variable x. The expressions for elements of the matrices A, B, t 
are not given here since they are cumbersome. We indicate only zero and nonzero columns of the matrix C 
combining the numbers of zero columns (see Section 1) into the set K, and the numbers of nonzero column.. 
into the set J: 

J = {1,2,3,4,5,6}, K = {1,2, . . . .  12} \ J .  (2.14 
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TABLE 1 

L 4 ~ ,.?> 40) 
kHz 

6 1.202 2.327 2.781 3.510 3.708 4.392 
8 1.202 2.327 2.781 3.465 3.693 4.114 
10 1.202 2.327 2.781 3.465 3.669 4.055 
12 1.202 2.327 2.781 3.465 3.668 4.034 

TABLE 2 

Classical theory 

0 
2 
4 
6 
8 
10 

1.202 
0.515 
0.634 
1.079 
1.717 
2.525 

Nonclassical theory 

kHz 

2.328 2.782 1.202 
0.954 1.486 0.513 
0.954 1.318 0.628 
1.471 12.128 1.057 
2.29313.481 1.661 
3.38615.174 2.408 

I 
i 2.327 
] 0.949 
10.941 
il.431 
i 2.196 
i 3.186 

2.781 
1.475 
1.294 
2.047 
3.270 
4.724 

Note that after deletion of the 5th. 6th. 1 lth, and 12th rows and of the same columns from the 12 x 12 matrices 
.,4, B, C, the corresponding 8 x 8 matrices of coefficients of the classical system of differential equations for 
the free oscillations of the conic shell are obtained. This follows immediately from the passage to the limit 

(2.9), if we take into account that these rows and columns of matrices .,4, B, C vanish as c!/k) ~ ~ .  
The solution to problem (2.12), (2.13) is constructed in the form of the Fourier series 

y = uo(x) + ~ ,  (un(x) cos n~ + vn(z) sin n~2) (2.15) 
n = l  

in terms of a system of trigonometric functions with the vector coefficients u,~(z), vn(x). It is clear that the 
solution in the form (2.15) satisfies the condition of 27r-periodicity with respect to the angular coordinate 
~, and also the boundary conditions of rigid fixing (2.13) if the vector-functions u,,(x), vn(x) satisfy the 
requirement 

IIE6,O611u,, --IlE6,06llvn = 0 at x = a/b, 1. (2.16) 

Substituting this solution into (2.12), setting the general term of the Fourier series obtained equal to 
zero, and taking into account the boundary conditions (2.16), we obtMn two linear boundary-value problems 
of the form (1.3) for the coefficients of expansion (2.15), which are not related to each other. It can be shown 
that the eigenvalues of these boundary-value problems coincide, and the eigenvectors corresponding to them 
are obtained from one another by a linear orthogonal transformation of revolution. Therefore, it will suffice 
to consider only one of these problems. 

Thus, the investigation of the free oscillations of the conic shell is reduced to the integration of a linear 
boundary-value problem on the eigenvalues of a system of ordinary differentiM equations. The numerical 
solution to this 'problem was obtained by the method developed in Section 1 by using the orthonormal 
coordinate system 

= V l - a / b  1 - a / b  1 e j ,  k = l , 2 , . . . , L ,  j E J ,  (2.17) 

where Pk(t) are the Legendre polynomials orthogonal in the segment [-1,  1] and e I are the vectors of the 
standard orthonormal basis in R 12. It is seen from (2.14) that the coordinate system (2.17) consists of 6L 
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vectors, which requires the solution of boundary-value problem (1.11) for the 12 x 6L matrix Z(x) and 
the solution of the algebraic eigenvalue problem for the 6L x 6L matrix of coefficients of sy.stem (1.8). 
Boundary-value problem (1.11) was solved by the method of invariant imbedding [1], and the QR-algorithm 
in combination with a preliminary reduction of the matrix to the Hessenberg form was used in the numerical 
solution of the eigenvalue problem (see [10]). The value of the parameter L sufficient to provide high accuracy 
of the result was determined by means of numerical investigation of the convergence rate of the method.  The 
corresponding numerical data are cited below. 

The calculations were carried out on an Elbrus-2 computer. 
3. N u m e r i c a l  R e s u l t s .  Table 1 presents the data which make it possible to evaluate the convergence 

rate of the method relative to the parameter L, and the corresponding values of six lower natural frequencies 

w~ ~ w~~ . . . ,  oa~ ~ of axisymmetric forms of oscillations found on the basis of nonclassical equations (2.1)- 
(2.8). The results were obtained for a two-layered composite shell whose internal layer was reinforced by fibers 
of constant cross section in the circular direction, and the external layer was reinforced in the meridional 
direction at the geometrical parameters 

b = l - m ,  a = ~ r / l O ,  a/b=0.3, h/b=O.O1, 

mechanical parameters 

Ea b = E  b = 3 0 0 0 M P a ,  E [ = E ~ = 2 5 0 G P a ,  

pb -- pb = 1250 kg /m 3, 

and structural ones 

hi - ho = h2 - ha = 0.5h; 

= = = = 0 . 3 ,  

p~ = p~ = 1710 kg/m 3, 

(3.1) 

(3.2) 

W~l = w~2 = 0.5, wl = 0.5, w2 ]~=,/b = 0.9 (3.3) 

of the composite layered shell. Here h k - hk_], wk, wzk (k = 1,2) are. respectively, the thickness of the kth 

layer and the reinforcement intensity in its surface and over its thickness (see [15]): E b(r), v b(r), pb(r) is the 
Young's modulus, the Poisson's coefficient, and the density of the binding material (index b) and reinforcing 
(index r) fibers of the kth layer. The values of the mechanical parameters (2.3) correspond (see [16]) to epoxy 
binding fibers and boron reinforcing fibers. The effective rigidity and pliability of the layers were determined 
on the basis of equations for the model of a reinforced layer developed in [15]. 

It is seen from Table 1 that the approximations to the exact values of natural frequencies in the 
process being considered are realized from above. Stabilization of the computation process for three lower 
natural frequencies is achieved even at L = 6, for the 4th natural frequency, at L = 8: for the 5th, at L = 10, 
and for the 6th, at L = 12. Similar regularities are also valid for nonaxisymmetric forms of oscillation, as 
was revealed by numerical investigation. Note that  in the example considered, the axisymmetric forms of 
free oscillations corresponding to the natural frequencies w~ 0), w~ ~ w~ 0) are twisting forms, and the forms 

corresponding to the frequencies r ~ w~ ~ w~ ~ are predominantly bending forms. 
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The twisting forms of oscillations corresponding to the frequencies w{ ~ w~0) are shown in Fig. 1 
by circular displacements of the reference surface, and predominantly bending forms corresponding to the 

(0) frequencies w~ ~ ~'5 are shown in Fig. 2 by deflections, 
Table 2 lists, depending on the parameter of circular wave formation n, the calculation results for three 

lower natural frequencies found both on the basis of nonclassical equations (2.1)-(2.8) and classical equations 
(2.1)-(2.8), and (2.10) for the steady-state free oscillations of the conic shell. The results were obtained with 
values of the parameters in (3.1)-(3.3). 

It is seen from Table 2 that neglect of transverse shear deformations leads to overestimation of the 
calculated values of natural frequencies; the overestimation increases with increase in the ordinal number of 
the frequency being determined and with increase in the number n of circular harmonics being considered. 
Specifically, the relative error introduced into the determination of the natural frequency wl ~ by neglecting 
transverse shears is practically absent, whereas this error comprises even 4.63% in the determination of the 
natural frequency ~,~10). Ii1 the determination of the natural frequencies w~ ~ and w~ 10), the relative error 
owing to the neglect of transverse shear deformations is, respectively, 0.04 and 8.70%. It is also seen from 
Table 2 that the dependences of the lower natural frequencies of the conic shell on the number of circular 
harmonics n are characterized by the presence of minimum points. A similar result was obtained in [7], where 
the corresponding analysis was carried out for a composite cylindrical shell. 

R E F E R E N C E S  

1 .  

2. 

3. 

4. 

. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

A. N. Andreyev. "On the numerical solution of linear boundary-value problems of the stability of 
layered shells of revolution," PriM. Mekh., 25, No. 8, 60-66 (1989). 
A. N. Andreyev and Yu. V. Nemirovskii, "On the theory of elastic multilayered anisotropic shells," 
Izv. Akad. .Vauk SSSR, Mekh. Tverd. Tela, 5, 87-96 (1977). 
A. L. Goldenveizer, V. B. Lidskii, and P. E. Tovstik, Free Oscillations of Thin Elastic Shells [in 
Russian], Nauka. Moscow (1979). 
A. V. Karmiahin, V. I. Myachenkov, A. A. Repin, and A. N. Frotov, "A unified method for solving 
problems of the stability and oscillations of shells of revolution," in: Theory of Plates and Shells, 
Nauka, Moscow (1971), pp. 141-146. 
A. V. Karmishin. V. A. Lyaskovets, V. I. Myachenkov, and A. N. Frolov, Statics and Dynamics of 
Thin-Walled Shell Constructions [in Russian], Mashinostroyeniye, Moscow (1975). 
V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayered Constructions [in Russian], 
Mashinostroyeniye. Moscow (1980). 
A. E. Bogdanovich, Nonlinear Problems of Dynamics of Cylindrical Composite Shells, Zinatne, Riga 
(1987). 
E. A. Koddington and N. Levinson, Theory of Ordinary Differential Equations [in Russian], Izd. 
Inostr. Lit., Moscow (1958). 
S. G. Mikhlin, l'ariational Methods in Mathematical Physics [in Russian], Nauka, Moscow (1970). 
B. S. Gardow, J. M. Boyle, J. J. Dongarra, C. B. Moler, et al., Matrix Eigensystem Routines -- 
EISPACK Guide Extension, Springer-Verlag, Berlin (Lect. Notes Comput. Sci., vol. 51) (1977). 
A. N. Andreyev, "Estimation of the strength of an elastic layered composite shell of revolution in a 
geometrical nonlinear statement," Prikl. Mekh. 26, No. 7, 43-49 (1990). 
A. N. Anreyev, "On the numerical integration of equations of axisymmetric bending of layered shells 
of revolution by the method of invariant imbedding," in: Dynamics of Continuous Media [in Russian], 
Institute of Hydrodynamics, 73 (1985), pp. 137-148. 
A. N. Andreyev. "On the numerical solution of boundary-value problems of statistics of layered 
composite shells of revolution," in: Numerical Methods of Solving Problems of Elasticity and Plasticity 
Theory: Materials of X All-Union Conference, Krasnoyarsk, 23-27 Febr., 1987, Novosibirsk (1988), 
pp. 3-8. 

771 



14. 

15. 

16. 

A. N. Andreyev and Yu. V. Nemirovskii, "Numerical analysis of the strain-stressed state of layered 
shells of revolution by the method of invariant imbedding," Izv. Akad. Nauk Arm. SSR, Mekhanika, 
42, No. 1, 9-19 (1989). 
Yu. V. Nemirovskii, "On the theory of thermoelastic bending of reinforced shells and plates," Mekh. 
Polim., No. 5, 861-873 (1972). 
V. V. Vasil'ev et al. (ed.) Composite Materials: Manual [in Russian], Mashinostroyeniye, Moscow 
(1990). 

772 


